Nonparametric Modelling of ECG: Applications to Denoising and to Single Sensor Fetal ECG Extraction

نویسندگان

  • Bertrand Rivet
  • Mohammad Niknazar
  • Christian Jutten
چکیده

In this work, we tackle the problem of fetal electrocardiogram (ECG) extraction from a single sensor. The proposed method is based on non-parametric modelling of the ECG signal described thanks to its second order statistics. Each assumed source in the mixture is thus modelled as a second order process thanks to its covariance function. This modelling allows to reconstruct each source by maximizing the related posterior distribution. The proposed method is tested on synthetic data to evaluate its performance behavior to denoise ECG. It is then applied on real data to extract fetal ECG from a single maternal abdominal sensor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PCA/ICA based Fetal ECG Extraction from Mother Abdominal Recordings by Means of a Novel Data-driven Approach to Fetal ECG Quality Assessment

Background: Fetal electrocardiography is a developing field that provides valuable information on the fetal health during pregnancy. By early diagnosis and treatment of fetal heart problems, more survival chance is given to the infant.Objective: Here, we extract fetal ECG from maternal abdominal recordings and detect R-peaks in order to recognize fetal heart rate. On the next step, we find a be...

متن کامل

Sequential Total Variation Denoising for the Extraction of Fetal ECG from Single-Channel Maternal Abdominal ECG

Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estim...

متن کامل

INTELLIGENT TECHNIQUE OF CANCELING MATERNAL ECG IN FECG EXTRACTION

In this paper, we propose a technique of artificial intelligence called adaptive neuro fuzzy inference system (ANFIS) for canceling maternal electrocardiogram (MECG) in fetal electrocardiogram extraction (FECG).This technique is used to estimate the MECG present in the abdominal signal of a pregnant woman. The FECG is then extracted by subtracting the estimated MECG from the abdominal signal. P...

متن کامل

Fetal electrocardiogram extraction based on non-stationary ICA and wavelet denoising

Fetal electrocardiogram (fECG) monitoring is a technique for obtaining important information about the condition of the fetus during pregnancy and labour by measuring electrical signals generated by the fetal heart as measured from multi-channel potential recordings on the mother body surface. It is shown in this paper that the fetal ECG can be reconstructed by means of higher order statistical...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012